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We assume a linear relationship 
between predictors and outcome:

outcome coefficients

constant

predictors

error (noise)



Topics
• Explanatory vs. predictive modeling with 

regression
• Example: prices of Toyota Corollas
• Fitting a predictive model
• Assessing predictive accuracy
• Selecting a subset of predictors



Explanatory Modeling
Goal: Explain relationship between predictors 
(explanatory variables) and target 

● Familiar use of regression in data analysis

● Model Goal: Fit the data well and understand the 
contribution of explanatory variables to the 
model

● Metrics:  “goodness-of-fit” - R2, residual analysis, 
p-values



Predictive Modeling
Goal: predict target values in other data where we 
have predictor values, but not target values

● Classic data mining context
● Model Goal: Optimize predictive accuracy
● Train model on training data
● Assess performance on validation (hold-out) data
● Explaining role of predictors is not primary 

purpose (but useful)



Example: Prices of Toyota Corolla
ToyotaCorolla.csv

Goal: predict prices of used Toyota 
Corollas based on their specification

Data: Prices of 1000 used Toyota 
Corollas, with their specification 
information



Variables Used

 
Price in Euros
Age in months as of 8/04
KM (kilometers)
Fuel Type (diesel, petrol, CNG)
HP (horsepower)
Metallic color (1=yes, 0=no)
Automatic transmission (1=yes, 0=no)
CC (cylinder volume)
Doors
Quarterly_Tax (road tax)
Weight (in kg)



Data Sample
(showing only the variables to be used in analysis)

 



Preprocessing
Fuel type is categorical (in R - a factor variable), must be 
transformed into binary variables.  R’s lm function does this 
automatically.

Diesel (1=yes, 0=no)

Petrol (1=yes, 0=no)

None needed* for “CNG” (if diesel and petrol are both 0, the 
car must be CNG)

*You cannot include all the binary dummies; in regression this will 
cause a multicollinearity error.  Other machine learning methods 
can use all the dummies.



Fitting a Regression Model to the Toyota Data

put 60% in training

library(caret)
car.df <- mlba::ToyotaCorolla
# select variables for regression
outcome <- "Price"
predictors <- c("Age_08_04", "KM", "Fuel_Type", "HP", "Met_Color", 
     "Automatic", "CC", "Doors", "Quarterly_Tax", "Weight")
# reduce data set to first 1000 rows and selected variables
car.df <- car.df[1:1000, c(outcome, predictors)]

# partition data
set.seed(1) # set seed for reproducing the partition
idx <- createDataPartition(car.df$Price, p=0.6, list=FALSE)
train.df <- car.df[idx, ]
holdout.df <- car.df[-idx, ]

# use lm() to run a linear regression of Price on all 11 predictors in the
# training set.
# use . after ~ to include remaining columns in train.df as predictors.
car.lm <- lm(Price ~ ., data = train.df)
# use options() to ensure numbers are not displayed in scientific notation.
options(scipen = 999)
summary(car.lm)



Output of the Regression Model

> summary(car.lm)

Call:
lm(formula = Price ~ ., data = train.df)

Residuals:
Min    1Q   Median 3Q  Max
-9047 -831   -6   832  6057
Coefficients:
            Estimate    Std. Error      t value    Pr(>|t|)
(Intercept)   -3725.59270 1913.92374      -1.95       0.05206 .
Age_08_04      -133.98649    4.92047     -27.23     < 0.0000000000000002 ***
KM               -0.01741    0.00231      -7.53       0.00000000000019238 ***
Fuel_TypeDiesel 1179.18603 724.71141       1.63       0.10425
Fuel_TypePetrol 2173.64897 729.55378       2.98       0.00301 **
HP                36.34253   4.75838       7.64       0.00000000000008997 ***
Met_Color         -7.60255 119.54320      -0.06       0.94931
Automatic        276.55860 267.85985       1.03       0.30227
CC                 0.01517   0.09440       0.16       0.87236
Doors              2.28016  62.30556       0.04       0.97082
Quarterly_Tax      9.64453   2.60048       3.71       0.00023 ***
Weight            15.25566   1.81726       8.39       0.00000000000000035 ***

“P-value,” a measure of the chances 
that a random shuffling could produce a 
coefficient as big as observed (low 
p-values mean “statistical significance”)



Accuracy Metrics for the Regression Model

Residual standard error: 1340 on 589 degrees of freedom
Multiple R-squared: 0.869, Adjusted R-squared: 0.867
F-statistic: 356 on 11 and 589 DF, 
     p-value: <0.0000000000000002

These are traditional metrics, i.e. measured on the training data



Specialized Metrics Used in Regression
(lower values are better)

Akaike Information Criterion (AIC)
AIC = n ln(SSE/n) + n(1 + ln(2π)) + 2(p + 1)

Bayesian Information Criterion (BIC)
BIC = n ln(SSE/n) + n(1 + ln(2π)) + ln(n)(p + 1)

Mallow’s Cp
Cp = SSE/σ2

full  + 2(p+1) - n
   σ2

full is the estimated MSE for the full model
     Mallow’s Cp is equivalent to AIC for large samples



Make the Predictions for the Holdout Data
(and show some residuals)

# use predict() to make predictions on a new set.
pred <- predict(car.lm, holdout.df)

options(scipen=999, digits=0)
data.frame(
   'Predicted' = pred[1:20],
   'Actual' = holdout.df$Price[1:20],
   'Residual' = holdout.df$Price[1:20] - pred[1:20]
)
options(scipen=999, digits = 3)

    Predicted Actual Residual
1    16652    13500   -3152
14   19941    21500    1559
15   19613    22500    2887
16   20424    22000    1576
18   16553    17950    1397
19   15247    16750    1503
20   15006    16950    1944
21   14949    15950    1001



# calculate performance metrics
rbind(
Training=mlba::regressionSummary(pred
ict(car.lm, train.df), 
train.df$Price),
Holdout=mlba::regressionSummary(pred, 
holdout.df$Price)
)

How Well did the Model Do With the Holdout Data?

          RMSE MAE
Training  1329 1009
Holdout   1423 1054



Distribution of Residuals (Holdout Set)

Symmetric 
distribution

A few outliers

library(ggplot2)
pred <- predict(car.lm, holdout.df)
all.residuals <- holdout.df$Price - pred

ggplot() +
     geom_histogram(aes(x=all.residuals), fill="lightgray", color="grey") +
     labs(x="Residuals", Y="Frequency")



Feature (Variable, Predictor) Selection

• Why select a subset of attributes to predict the target?
• More predictors/attributes problems:

• Expensive data collection
• More missing data
• Multicollinearity – some predictors behave the same way
• Uncorrelation with target variable

• The goal
• Find parsimonious model (simplest model that performs sufficiently well)
• More robust & higher predictive accuracy

• Variable selection methods
• Exhaustive search
• Partial Subset selection: Forward
• Partial Subset selection: Backward
• Partial Subset selection: Stepwise



Selecting Subsets of Predictors
Goal: Find parsimonious model (the simplest 
model that performs sufficiently well)

● More robust
● Higher predictive accuracy

Exhaustive Search

Partial Search Algorithms
● Forward
● Backward
● Stepwise



Exhaustive Search = Best Subset

● All possible subsets of predictors assessed (single, pairs, 
triplets, etc.)

● Computationally intensive, not feasible for big data
● Judge by “adjusted R2”

Penalty for 
number of 
predictors



# use regsubsets() in package leaps to run an exhaustive search.

library(leaps)
library(fastDummies)

# create dummies for fuel type
leaps.train.df <- dummy_cols(train.df, remove_first_dummy=TRUE,
     remove_selected_columns=TRUE)
search <- regsubsets(Price ~ ., data=leaps.train.df, nbest=1,
     nvmax=ncol(leaps.train.df), method="exhaustive")
sum <- summary(search)

# show models
sum$which

# show metrics
sum$rsq
sum$adjr2
sum$cp

Exhaustive search requires library leaps and manual coding into binary dummies



Exhaustive output shows best model for 
each number of predictors

sum$which

 (Intercept) Age_08_04 KM   HP Met_Color Auto   CC   Doors Q_Tax Weight  Diesel  Petrol

1    TRUE    TRUE    FALSE FALSE FALSE   FALSE FALSE FALSE FALSE  FALSE  FALSE   FALSE

2    TRUE    TRUE    FALSE TRUE  FALSE   FALSE FALSE FALSE FALSE  FALSE  FALSE   FALSE

3    TRUE    TRUE    FALSE TRUE  FALSE   FALSE FALSE FALSE FALSE  TRUE   FALSE   FALSE

4    TRUE    TRUE    TRUE  TRUE  FALSE   FALSE FALSE FALSE FALSE  TRUE   FALSE   FALSE

5    TRUE    TRUE    TRUE  TRUE  FALSE   FALSE FALSE FALSE TRUE   TRUE   FALSE   FALSE

6    TRUE    TRUE    TRUE  TRUE  FALSE   FALSE FALSE FALSE TRUE   TRUE   FALSE   TRUE

7    TRUE    TRUE    TRUE  TRUE  FALSE   FALSE FALSE FALSE TRUE   TRUE   TRUE    TRUE

8    TRUE    TRUE    TRUE  TRUE  FALSE   TRUE  FALSE FALSE TRUE   TRUE   TRUE    TRUE

9    TRUE    TRUE    TRUE  TRUE  FALSE   TRUE  TRUE  FALSE TRUE   TRUE   TRUE    TRUE

10   TRUE    TRUE    TRUE  TRUE  TRUE    TRUE  TRUE  FALSE TRUE   TRUE   TRUE    TRUE

11   TRUE    TRUE    TRUE  TRUE  TRUE    TRUE  TRUE  TRUE  TRUE   TRUE   TRUE    TRUE

Each row is the best model for a given # of predictors, 
“TRUE” and “FALSE” show whether the variable is included



Adjusted R2 and CP for the models with 1 predictor, 2 
predictors, 3 predictors, etc. (exhaustive search method)

> sum$adjr2

[1] 0.773 0.815 0.847 0.864 0.865 0.867 0.867 0.867 0.867 
0.867 0.867

> sum$cp

[1] 422.90 234.33 92.94 17.09 14.05 5.73 5.20 6.03 8.01 
10.00 12.00

Metrics improve until you hit 6-7 predictors, then stabilize, so 
choose model with 6-7 predictors



Exhaustive search may be computationally 
infeasible - some alternatives:

FORWARD SELECTION
● Start with no predictors
● Add them one by one (add the one with largest contribution)
● Stop when the addition is not statistically significant

BACKWARD ELIMINATION
● Start with all predictors
● Successively eliminate least useful predictors one by one
● Stop when all remaining predictors have statistically significant 

contribution

STEPWISE
● Like Forward Selection
● Except at each step, also consider dropping non-significant 

predictors



Regularization (shrinkage)

● Alternative to subset selection
● Rather than binary decisions on including variables, 

penalize coefficient magnitudes
● This has the effect of “shrinking” coefficients, and 

also reducing variance
● Predictors with coefficients that shrink to zero are 

effectively dropped
● Variance reduction improves prediction 

performance



Shrinkage - Ridge Regression

● OLR minimizes sum of squared errors (residuals) - 
SSE

● Ridge regression minimizes SSE subject to penalty 
being below specified threshold

● Penalty, called L2, is sum of squared coefficients
● λ parameter controls degree of regularization

 (Use cross-validation to set)
● Predictors are typically standardized

Goal - minimize: 



Shrinkage - Lasso

● OLR minimizes sum of squared errors (residuals) - 
SSE

● Ridge regression minimizes SSE + penalty
● Penalty, called L1, is sum of absolute values for  

coefficients
● λ parameter controls degree of regularization

 (Use cross-validation to set)
● Predictors are typically standardized

Goal - minimize: 



Ridge Regression Using Caret

library(caret)
trControl <- caret::trainControl(method='cv', number=5, 
allowParallel=TRUE)
tuneGrid <- expand.grid(lambda=10^seq(5, 2, by=-0.1), alpha=0)
model <- caret::train(Price ~ ., data=train.df,
     method='glmnet',
     family='gaussian', # set the family for linear regression
     trControl=trControl,
     tuneGrid=tuneGrid)
model$bestTune
coef(model$finalModel, s=model$bestTune$lambda)



Lasso Regression Using Caret

tuneGrid <- expand.grid(lambda=10^seq(4, 0, by=-0.1), alpha=1)
model <- caret::train(Price ~ ., data=train.df,
     method='glmnet',
     family='gaussian', # set the family for linear regression
     trControl=trControl,
     tuneGrid=tuneGrid)
model$bestTune
coef(model$finalModel, s=model$bestTune$lambda)

When you run both the Ridge and Lasso models, you will see that 
the coefficients for key predictors are smaller than the equivalent 
ones in the basic model that was developed initially.



Summary
● Linear regression models are very popular tools, not 

only for explanatory modeling, but also for prediction
● A good predictive model has high predictive 

accuracy (to a useful practical level)
● Predictive models are fit to training data, and 

predictive accuracy is evaluated on a separate 
validation data set

● Removing redundant predictors is key to achieving 
predictive accuracy and robustness

● Subset selection and regularization (shrinkage) 
methods help find “good” candidate models. 


